eBETAMathematician Search...
Home · Algebra · Basic properties of radicals and examples

Basic properties of radicals and examples

Get to know the roots of math with their basic properties and review some examples of using that.

First of all, there is a table of basic properties of radicals. With these properties you can solve many tasks included nth roots.

\begin{array}{|c|c|} \hline \sqrt{a}\cdot\sqrt{b}=\sqrt{ab} & \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \\\hline \sqrt{a^n}=(\sqrt{a})^n & (\sqrt a)^2=a \\\hline a\sqrt b =\sqrt{a^2\cdot b} & \sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]{a} \\\hline \end{array}

Solved examples

Solve this expression $2\sqrt{25}-3\sqrt[3]{125}+\sqrt[3]{-216}$

$$2\sqrt{25}-3\sqrt[3]{125}+\sqrt[3]{-216}=2\cdot 5 - 3\cdot 5 - 6 = -11$$

Simplify this expression $(2\sqrt{3}-1)(2-\sqrt{3})-5\sqrt{3}$

$$(2\sqrt{3}-1)(2-\sqrt{3})-5\sqrt{3}=4\sqrt{3}-6-2+\sqrt{3}-5\sqrt{3}=-8$$

Simplify this expression $(1+3\sqrt{3})^2-(3+\sqrt{3})^2$

$$(1+3\sqrt{3})^2-(3+\sqrt{3})^2=1+6\sqrt{3}+27-9-6\sqrt{3}-3=16$$

Simplify this expression $2\sqrt{75}+5\sqrt{27}-3\sqrt{48}$

$$2\sqrt{75}+5\sqrt{27}-3\sqrt{48}=2\sqrt{3\cdot 25}+5\sqrt{3\cdot 9}-3\sqrt{3\cdot 16}=10\sqrt{3}+15\sqrt{3}-12\sqrt{3}=13\sqrt{3}$$

Simplify this expression $\displaystyle\frac{2\sqrt{32}+\sqrt{128}}{5\sqrt{200}-\sqrt{50}}$

$$\frac{2\sqrt{32}+\sqrt{128}}{5\sqrt{200}-\sqrt{50}}=\frac{2\sqrt{2\cdot 16}+\sqrt{2\cdot 64}}{5\sqrt{2\cdot 100}-\sqrt{2\cdot 25}}=\frac{8\sqrt{2}+8\sqrt{2}}{50\sqrt{2}-5\sqrt{2}}=\frac{16\sqrt{2}}{45\sqrt{2}}=\frac{16}{45}$$

Wanna check your skills?

A quiz is based on this article and has 5 questions.

2021-07-26