Basic properties of logarithms
The logarithm of a given number b is the exponent to which another fixed number, the base a, must be raised, to produce that number b $(a>0, \ a\neq 1, \ b>0)$.
$$\displaystyle \log_ab=c, \ a^c=b$$Logarithmic identities
Logarithm power rules are very useful whenever expressions involving logarithmic functions need to be simplified:
$$\displaystyle \alpha \log _ax=\log _a x^{\alpha}$$ $$\frac{1}{\alpha}\log _ax=\log _{a^{\alpha}}x$$ $$\displaystyle a^{\log_ax}=x$$The base of logarithm can be changed in other. It's very helpful, when we need to calculate logarithm with calculator which has only standard 10 and e bases. Change of base formula:
$$\displaystyle \log_ax=\frac{\log_bx}{\log_ba}$$Sum and difference of two logarithms with the same base properties (or product to sum and quotient to difference) formulas:
$$\log_ax+\log_ay=\log_axy$$ $$\log_ax-\log_ay=\log_a\frac{x}{y}$$Solved examples
Solve this expression $\log_2{8}+3\log_3{9}$
$$\log_2{8}+3\log_3{9}=3+3\cdot 2=9$$Simplify this expression $2\log_2{3}+\log_2{9}-2\log_2{27}$
$$2\log_2{3}+\log_2{9}-2\log_2{27}=2\log_2{3}+\log_2{3^2}-2\log_2{3^3}=2\log_2{3}+2\log_2{3}-2\cdot 3 \log_2{3}=-2\log_2{3}$$Solve this expression $27^{\log_3{5}}+25^{\log_5{2}}$
$$27^{\log_3{5}}+25^{\log_5{2}}=3^{3\log_3{5}}+5^{2\log_5{2}}=3^{\log_3{5^3}}+5^{\log_5{2^2}}=3^{\log_3{125}}+5^{\log_5{4}}=125+4=129$$Convert $\log_2{5}$ to an expression with logarithms having a base of 10.
$$\log_2{5}=\frac{\lg{5}}{\lg{2}}$$Solve this expression $\log_2{3}+\log_2{6}-\log_2{9}$
$$\log_2{3}+\log_2{6}-\log_2{9}=\log_2{\frac{3\cdot 6}{9}}=\log_2{2}=1$$Wanna check your skills?
A quiz is based on this article and has 5 questions.
Quiz
2020-11-28
All categories
New content
- Circle: arc, sector and segment (Geometry)
- Circle: radius, diameter, circumference and area (Geometry)
- The law of cosines and examples (Geometry)
- The law of sines and examples (Geometry)
- Rewriting radicals into exponential form (Algebra)
- Infinite geometric sequence sum formula and examples (Algebra)
- Geometric sequence formulas and examples (Algebra)
- Arithmetic sequence formulas and examples (Algebra)