eBETAMathematician Search...
Home · Algebra · Basic laws of calculating exponents and examples

Basic laws of calculating exponents and examples

Get to know the math exponents, their basic properties and review some examples of using that.

First of all, there is a table of basic exponents. With these properties you can solve many tasks included rational exponents.

\begin{array}{|c|c|} \hline a^n\cdot a^m=a^{n+m} & a^n:a^m=a^{n-m} \\\hline a^0=1 & (a^n)^m=a^{n\cdot m} \\\hline (a\cdot b)^n=a^n\cdot b^n & \left(\frac{a}{b}\right)^n=\frac{a^n}{b^n} \\\hline a^{-n}=\frac{1}{a^n} & \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^n \\\hline \end{array}

Solved examples

Let's solve some example tasks to see how easy to find all values of these terms.

Solve this expression $\displaystyle 2^{-2}\cdot 5^{0}\cdot 4^{2}:3^{-3}$

$$2^{-2}\cdot 5^{0}\cdot 4^{2}:3^{-3}=\frac{1}{2^2}\cdot 1 \cdot 16:\frac{1}{3^3}=108$$

Simplify this expression $\displaystyle x^{8}\cdot x^{-2}\cdot x^{-4}:x^{-3}$

$$x^{8}\cdot x^{-2}\cdot x^{-4}:x^{-3}=x^{8+(-2)+(-4)-(-3)}=x^{5}$$

Simplify this expression $\displaystyle 2^{-20}\cdot 3^{15}\cdot 2^{30}:3^{5}$

$$2^{-20}\cdot 3^{15}\cdot 2^{30}:3^{5}=2^{-20+30}\cdot 3^{15-5}=2^{10}\cdot 3^{10}=6^{10}$$

Simplify this expression $\displaystyle\frac{105(x^{-2}y^{-4})^{-2}}{3(x^3)^{-2}(y^7)^{-3}}$

$$\frac{105(x^{-2}y^{-4})^{-2}}{3(x^3)^{-2}(y^7)^{-3}}=\frac{105x^{4}y^{8}}{3x^{-6}y^{-21}}=35x^{10}y^{29}$$

Simplify this expression $\displaystyle\frac{8^{-20}\cdot 128^{5}}{16^{-10}\cdot 4^{30}}$

$$\frac{8^{20}\cdot 128^{5}}{16^{10}\cdot 4^{30}}=\frac{(2^3)^{20}\cdot (2^7)^{5}}{(2^4)^{10}\cdot (2^2)^{30}}=\frac{2^{60}\cdot 2^{35}}{2^{40}\cdot 2^{60}}=\frac{2^{95}}{2^{100}}=2^{-5}$$

Wanna check your skills?

A quiz is based on this article and has 5 questions.

2021-07-27