emathematician Search...
Home · Algebra · Basic laws of calculating exponents

Basic laws of calculating exponents

Get to know the math exponents, their basic properties and review some examples of using that.

First of all, there is a table of basic exponents. With these properties you can solve many tasks included rational exponents.

\begin{array}{|c|c|} \hline a^n\cdot a^m=a^{n+m} & a^n:a^m=a^{n-m} \\\hline a^0=1 & (a^n)^m=a^{n\cdot m} \\\hline (a\cdot b)^n=a^n\cdot b^n & \left(\frac{a}{b}\right)^n=\frac{a^n}{b^n} \\\hline a^{-n}=\frac{1}{a^n} & \left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^n \\\hline \end{array}

Solved examples

Let's solve some example tasks to see how easy to find all values of these terms.

Example No. 1. Simplify this expression and write answer without fraction: $\displaystyle\frac{105(x^{-2}y^{-4})^{-2}}{3(x^3)^{-2}(y^7)^{-3}}$

$$\frac{105(x^{-2}y^{-4})^{-2}}{3(x^3)^{-2}(y^7)^{-3}}=\frac{105x^{4}y^{8}}{3x^{-6}y^{-21}}=35x^{10}y^{29}$$

2020-11-29

Comments

No comments at the moment

Write a comment

:

:

: